Lagrangian and Hamiltonian Mechanics with Fractional Derivatives
نویسندگان
چکیده
In this paper we discuss the fractional extention of classical Lagrangian and Hamiltonian mechanics. We give a view of the mathematical tools associated with fractional calculus as well as a description of some applications.
منابع مشابه
Cape Verde Praia , Santiago , Cape Verde
We prove a Noether’s theorem for fractional variational problems with Riesz-Caputo derivatives. Both Lagrangian and Hamiltonian formulations are obtained. Illustrative examples in the fractional context of the calculus of variations and optimal control are given.
متن کاملFractional generalization of gradient and Hamiltonian systems
We consider a fractional generalization of Hamiltonian and gradient systems. We use differential forms and exterior derivatives of fractional orders. We derive fractional generalization of Helmholtz conditions for phase space. Examples of fractional gradient and Hamiltonian systems are considered. The stationary states for these systems are derived. PACS numbers: 45.20.−d, 05.45.−a
متن کاملFractional variations for dynamical systems: Hamilton and Lagrange approaches
Fractional generalization of an exterior derivative for calculus of variations is defined. The Hamilton and Lagrange approaches are considered. Fractional Hamilton and Euler–Lagrange equations are derived. Fractional equations are obtained by fractional variation of Lagrangian and Hamiltonian that have only integer derivatives. PACS numbers: 45.20.−d, 45.20.Jj
متن کاملLiouville and Bogoliubov Equations with Fractional Derivatives
The Liouville equation, first Bogoliubov hierarchy and Vlasov equations with derivatives of non-integer order are derived. Liouville equation with fractional derivatives is obtained from the conservation of probability in a fractional volume element. This equation is used to obtain Bogoliubov hierarchy and fractional kinetic equations with fractional derivatives. Statistical mechanics of fracti...
متن کاملLagrangian Densities and Principle of Least Action in Nonrelativistic Quantum Mechanics
The Principle of Least Action is used with a simple Lagrangian density, involving second-order derivatives of the wave function, to obtain the Schrödinger equation. A Hamiltonian density obtained from this simple Lagrangian density shows that Hamilton’s equations also give the Schrödinger equation. This simple Lagrangian density is equivalent to a standard Lagrangian density with first-order de...
متن کامل